

Environmental Product Declaration

In accordance with 14025 and EN15804 +A2

APB 25

Owner of the declaration: Austin Powder GmbH

Product name: APB 25

Declared unit: 1 kg of manufactured, installed and used (detonated product)

Product category /PCR:

Packaged explosives/ NPCR 024:2021 version 2.0 Explosives and Initiation Systems, NPCR Part A: Construction products and services, version 2.0 **Program holder and publisher:** The Norwegian EPD foundation

Declaration number: NEPD-5026-4261-EN

Registration number: NEPD-5026-4261-EN

Issue date: 28.09.2023

Valid to: 28.09.2028

The Norwegian EPD Foundation

General information

Product: APB 25

Program Operator:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Tlf: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration Number: NEPD-5026-4261-EN

This declaration is based on Product **Category Rules**: NPCR 024:2021 version 2.0 Explosives and

Initiation Systems

NPCR Part A: Construction products and services. Version 2.0

Statements:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences.

Declared unit:

1 kg of manufactured, installed and used (detonated product)

Verification:

Independent verification of the declaration and data, according to ISO14025:2010

internal

external Sign

х

Mie Vold, LCA.no AS Independent verifier approved by EPD Norway

Owner of the declaration:

Austin Powder GmbH Contact person: Dr. Raphael Kubiak +43 (0)3585 2251-216 Phone: e-mail: raphael.kubiak@austinpoder.at

Manufacturer:

Austin Powder GmbH Weissenbach 16, St. Lambrecht, Austria +43 (0)3585 2251-0 Phone: office@austinpowder.at e-mail:

Place of production:

St. Lambrecht, Styria, Austria

Management system: ISO 9001

Organisation no: ATU56875929

Issue date: 28.09.2023

Valid to: 28.09.2028

Year of study:

Primary data represents year 2023. Study conducted in 2023.

Comparability:

EPDs from other programmes than EPD Norge/ The Norwegian EPD foundation may not be comparable.

The EPD has been worked out by:

Emma Salminen and Lassi Leinonen, Etteplan Finland Oy

Approved

Manager of EPD Norway

Product

Product description:

APB 25 booster charges are developed for a reliable initiation of commercial explosives. They are especially useful for pumped emulsion explosives used underground (mines and tunnel projects) and over ground.

Product specification:

Genaral product type: Booster charge

Raw materials per declared unit (1 kg product)	%
PETN	50-60%
Hexogen	20-30%
Plasticizer	10-15%
Packaging materials per declated unit (1 kg product)	kg
Plastic shell	0.342

In addition to primary package, APB 25 boosters are packaged into plastic bags in cardboard boxes wrapped with plastic to protect them in transportation and storing before use. Both primary and secondary packing materials are considered in the modelling.

Technical data:

EC-type examination certificate: EXP 1395-007/2021

Energy content (MJ/ea): 4.462

Market:

Europe

Reference service life, product:

Not relevant. Explosives cannot be used several times.

LCA: Calculation rules

Declared unit:

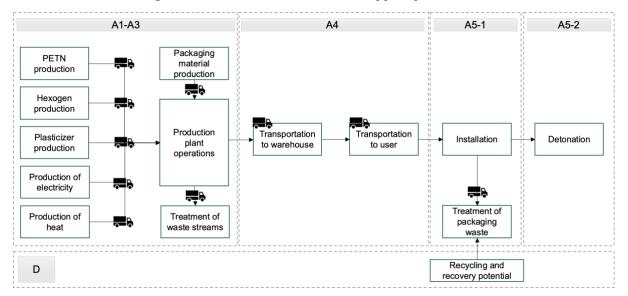
1 kg of manufactured, installed and used (detonated product) explosive product and its package

Data quality:

Data quality assessment is performed extensively for used modelling data. Data quality level and criteria of the UN Environment Global Guidance on LCA database development was applied in data quality assessment. Best available data was used in the modelling. Primary data from year 2023 is applied. Of priority, primary data is used. Secondary data from Sphera professional 2023

and Ecoinvent 3.9.1 databases is used when primary data is not accessed. Used secondary data is no older than 10 years.

Allocation:


Allocation procedure described in ISO 14044:2006, section 4.3.4 is followed.

Annual consumption of district heat, water and electricity and waste streams generated in production plant are allocated evenly to all products manufactured based on production volumes.

In allocation of the recycling and recovery processes, taking place in the modules A1, A3, and A5-1, the "polluter pays" principle is applied. Thus, the environmental burden related to waste stream treatment are allocated to the system producing them until end-of waste state has been met. Corresponding definition is used also for recycled materials entering the system.

System boundary:

System boundary includes all life cycle stages relevant for explosive products. Product studied is detonted in A5-1 stage and thus module B or C are not applicaple.

Cut-off criteria:

Cut-off criterion based on mass and energy is adhered to. The cut-off rule is reflected in the inputs and outputs of each separate module in the studied product system. Flows accounting less than 1% of the overall input mass or energy flows are excluded from the study if appropriate primary, secondary or even proxy data are not available.

- *Capital equipment, infrastructure and employee commute are excluded.*
- Production of pallets and possible plastic wrapping materials used in transportation and auxiliary fuels used in reject explosive waste treatment at production site are excluded.
- Production of detonators used in A5-1 stage are excluded.
- Detonation emissions of the primary packaging in A5-2 stage are excluded.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Transportation of product to its customer is modelled based on average Norwegian customer. Product is first transported to storage located in Norway using trucks and Ro-Ro ship over Baltic Sea. From storage in Norway, the studied explosives are transported to user site using van.

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Type of vehicle Distance (km)		value (l/tkm)
Truck	64%	EURO6 truck, 16t payload capacity	1755	Diesel with 6.91% bio- content	0.03
Ro-Ro ship	64%	Ro-Ro ship, 8000DWT	-Ro ship, 164		0.001
Van	50%	EURO6d, 1.5t payload capacity	100	Diesel with 6.91% bio- content	0.13

Installation (A5-1)

The boosters are unpacked from corrucated board boxes and installed. Drilling of blast holes and usage of detonators and other auxiliary materials are excluded. Cardboard and plastic used to protect boosters in transportation are assumed to be directed to nearest material recovery site.

Waste treatment	Unit	Value
Output materials to material recovery	kg	0.0685

Detonation (A5-2)

For explosive mass, the detonation emissions to air are calculated from the ideal theoretical composition of APB 25, based on balanced chemical reaction at final state and 1 bar, for the decomposition of the explosive, using stoichiometry and thermochemistry.

Substance, explosive mass	Unit	Value
Carbon, C	kg	0.184
Methane, CH ₄	kg	0.009
Carbon dioxide, CO ₂	kg	0.095
Carbon monoxide, CO	kg	0.103
Water (vapour), H ₂ O	kg	0.292
Nitrogen, N ₂	kg	0.195
Nitrogen oxides, NO _x	kg	0
Sodium carbonate, Na ₂ CO ₃	kg	0

Use stage (B1-B7)

Use stage is not relevant for explosives since product is fully detonated in A5 stage.

End of Life (C1-C4)

Product is fully detonated during use phase. Therefore C module is not relevant.

Benefits and loads beyond the system boundaries (D)

Packaging materials used to cover APB 25 boosters are assumed to be directed material recovery site in the A5-1 stage.

Waste treatment	Unit	Value
Packaging material directed to material revovery (A5-1)	kg	0.0685

LCA: Results

Impact assessment results are presented with core and additional impact indicators presented in EN15804+A2. Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

System boundaries (X=included, MND= module not declared, MNR=module not relevant)

	Product stage		Assembly stage			Use stage			En	d of li	ife sta	ıge	Benefits & loads beyond system boundary			
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
х	х	Х	Х	Х	MNR	MNR	MNR	MNR	MNR	MNR	MNR	MNR	MNR	MNR	MNR	×

core environmental impact indicators							
Indicator	Unit	A1-3	A4	A5-1	A5-2	D	
GWP-total	kg CO₂ eq.	5.00E+00	2.95E-01	5.31E-02	5.80E-01	-4.60E-02	
GWP-fossil	kg CO₂ eq.	5.02E+00	2.92E-01	3.11E-02	5.80E-01	-4.60E-02	
GWP- biogenic	kg CO₂ eq.	-2.19E-02	0.00E+00	2.19E-02	0.00E+00	0.00E+00	
GWP- LULUC	kg CO ₂ eq.	1.43E-03	2.60E-03	9.54E-05	0.00E+00	-7.00E-05	
ODP	kg CFC11 eq.	1.84E-09	4.47E-14	9.43E-14	0.00E+00	-5.70E-12	
AP	mol H⁺ eq.	1.19E-02	4.85E-04	6.23E-05	0.00E+00	-1.85E-04	
EP- freshwater	kg P eq.	4.26E-05	1.03E-06	7.77E-07	0.00E+00	-1.68E-06	
EP-marine	kg N eq.	3.10E-03	1.86E-04	2.79E-05	0.00E+00	-6.54E-05	
EP- terrestial	mol N eq.	3.55E-02	2.14E-03	2.69E-04	0.00E+00	-6.47E-04	
РОСР	kg NMVOC eq.	1.19E-02	5.07E-04	5.61E-05	4.79E-03	-2.19E-04	
ADP-M&M	kg Sb eq.	7.36E-07	1.89E-08	1.18E-08	0.00E+00	-6.72E-09	
ADP-fossil	MJ	1.47E+02	4.01E+00	4.34E-01	0.00E+00	-1.39E+00	
WDP	m³	1.01E+00	3.55E-03	1.38E-03	0.00E+00	-2.43E-02	

Core environmental impact indicators

GWP-total: Global Warming Potential; **GWP-fossil:** Global Warming Potential fossil fuels; **GWP-biogenic:** Global Warming Potential biogenic; **GWP-LULUC:** Global Warming Potential land use and land use change; **ODP:** Depletion potential of the stratospheric ozone layer; **AP:** Acidification potential, Accumulated Exceedance; **EP-freshwater:** Eutrophication potential, fraction of nutrients reaching freshwater end compartment; **EP-marine:** Eutrophication potential, Accumulated Exceedance; **POCP:** Formation potential of tropospheric ozone; **ADP-M&M**: Abiotic depletion potential for non-fossil resources (minerals and metals); **ADP-fossil:** Abiotic depletion potential for fossil resources; **WDP:** Water deprivation potential, deprivation weighted water consumption

ILCD classification	Indicator	Disclaimer	
ILCD type /	Global warming potential (GWP)	None	
level 1	Depletion potential of the stratospheric ozone layer (ODP)	None	
	Acidification potential, Accumulated Exceedance (AP)	None	
ILCD type /	Eutrophication potential, Fraction of nutrients reaching marine end compartment (EP-marine)	None	
level 2	Eutrophication potential, Accumulated Exceedance (EP-terrestrial)	None	
	Formation potential of tropospheric ozone (POCP)	None	
ILCD type /	Abiotic depletion potential for non-fossil resources (ADP- minerals&metals)		
level 3	Abiotic depletion potential for fossil resources (ADP-fossil)	2	

Classification of disclaimers to the declaration of core and additional environmental impact indicators

Water (user) deprivation potential, deprivation-weighted water consumption (WDP)

Disclaimer 2 – The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Parameter	Unit	A1-3	A4	A5-1	A5-2	D
RPEE	MJ	1.75E+01	2.83E-01	1.60E+00	0.00E+00	-1.51E+00
RPEM	MJ	7.65E-01	0.00E+00	-7.65E-01	0.00E+00	0.00E+00
TPE	MJ	1.83E+01	2.83E-01	8.37E-01	0.00E+00	-1.51E+00
NRPE	MJ	1.18E+02	4.02E+00	1.19E+00	0.00E+00	-1.39E+00
NRPM	MJ	2.93E+01	0.00E+00	-7.58E-01	0.00E+00	0.00E+00
TRPE	MJ	1.47E+02	4.02E+00	4.34E-01	0.00E+00	-1.39E+00
SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
W	m ³	3.55E-02	3.14E-04	4.12E-04	0.00E+00	-6.63E-04

Resource use

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non-renewable primary energy resources used as energy carrier; NRPM Non-renewable primary energy resources used as materials; TRPE Total use of non-renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non-renewable secondary fuels; W Use of net fresh water

End of life -	Waste					
Parameter	Unit	A1-3	A4	A5-1	A5-2	D
HW	kg	4.20E-02	2.02E-11	1.29E-08	0.00E+00	-1.06E-08
NHW	kg	4.25E-02	6.13E-04	2.68E-03	0.00E+00	-1.63E-03
RW	kg	2.10E-03	7.74E-06	1.66E-05	0.00E+00	-1.43E-05

HW Hazardous waste disposed; NHW Non-hazardous waste disposed; RW Radioactive waste disposed

Parameter	Unit	A1-3	A4	A5-1	A5-2	D
CR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MR	kg	2.70E-02	0.00E+00	6.85E-02	0.00E+00	0.00E+00
MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EEE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ETE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

End of life – output flow

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Information describing the biogenic carbon content at the factory gate

Biogenic carbon content	Unit	Value
Biogenic carbon content in product	kg C	0
Biogenic carbon content in the accompanying packaging	kg C	0.022

Additional Norwegian requirements

Greenhous gas emission from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

National electricity grid	Unit	Value	
Austria, national electricity grid mix	kg CO ₂ -eq./kWh	0.248	

Additional environmental impact indicators required in NPCR Part A for construction products

In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Indicator	Unit	A1-3	A4	A5-1	A5-2	D
GWP-IOBC	kg CO₂ eq.	5.04E+00	2.96E-01	3.14E-02	5.80E-01	-4.62E-02

GWP-IOBC Global warming potential calculated according to the principle of instantaneous oxidation.

Hazardous substances

The declaration is based upon reference to threshold values and/or test results and/or material safety data sheets provided to EPD verifiers. Documentation available upon request to EPD owner.

xThe product contains no substances given by the REACH Candidate list or the Norwegian
priority list.Mathematical
Priority list contains substances given by the REACH Candidate list or the Norwegian
priority list that are less than 0,1 % by weight.Mathematical
REACH Candidate List or the Norwegian Priority list, see table.Mathematical
Priority list.Mathematical
Priority list.Mathematical
Product is classified as hazardous waste (Avfallsforskiften, Annex III).

Indoor environment Product shall not be used indoor.

Carbon footprint

Carbon footprint has not been worked out for the product separately. The GWP total results presented in this EPD document represents the carbon footprint of the product studied.

Bibliography

ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures		
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines		
EN 15804:2012+A2:2019	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products		
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products		
NPCR 024:2021 version 2.0	Explosives and Initiation Systems		
NPCR Part A:	Construction products and services. Version 2.0.		
Etteplan Finland. 2023.	LCA background report for EPD of APB 25 – booster explosive		

	Program Operator	tlf	+47 23 08 80 00
	The Norwegian EPD Foundation		
© epd-norway	Post Box 5250 Majorstuen, 0303	e-	
Global Program Operator	Oslo	post:	post@epd-norge.no
	Norway	web	www.epd-norge.no
	Publisher	tlf	+47 23 08 80 00
	The Norwegian EPD Foundation	•••	
Clobal Program Operator	Post Box 5250 Majorstuen, 0303 Oslo	e- post:	post@epd-norge.no
	Norway	web	www.epd-norge.no
~	Owner of the declaration	tlf	+43 (0)3585 2251-0
EDIN 8.3	Austin Powder GmbH		
	Weissenbach 16	e- post:	office@austinpowder.at
	Austria	web	www.austinpowder.com/austria/ home/
	Author of the life cycle assessment	tlf	010 307 1010
~	Etteplan Finland Oy	fax	010 307 1012
Etteplan	Askonkatu 9 E, 15100 Lahti	e- post:	firstname.lastname @etteplan.com
	Finland	web	https://www.etteplan.com/ solutions/sustainability
ECO PLATFORM	ECO Platform ECO Portal	web web	<u>www.eco-platform.org</u> ECO Portal