

Austin Powder Argentina SA Petrochemical Division

N2O ABATEMENT PLANT AND PROCESS DATA

Change control: New document

1	General plant information	
1.1	Plant type (Dual Pressure/Mono-High/Mono-Medium/Mono-Low)	Mono-High
1.2	Reactor supplier (Grande Paroisse , Uhde , Wetherley , other)	Girdler
1.3	Year of start-up	First in the 60s and new Commissioning in mid- 2018
1.4	Number of reactors	1
1.5	Reactor pressure (bar, abs)	9
1.6	Reactor internal diameter in mm (basket)	800 (Hexagonal)
1.7	Gauze temperature (°C)	910
1.8	Production rate, design (100% Metric Tons HNO ₃ /day)	180
1.9	Production rate, real (100% Metric Tons HNO₃/day)	160
1.10	HNO₃ concentration in the final product (%)	56
1.11	Normal duration of the productive campaign (months)	3
1.12	Operation time (days per year)	330
1.13a	Ammonia flow to reactor (kg/h)	2,000
1.13b	Ammonia flow to reactor (Nm3/h)	2,600
1.14	Primary air flow to ammonia reactor (Nm ³ /h)	24,000
1.15	Secondary air flow (Nm ³ /h)	1,550
1.16	Temperature of the gas mixture (air/NH $_3$) to the reactor (°C)	240
1.17	Conversion efficiency of the plant at the beginning of the campaign (% or kgNH $_3$ /teHNO $_3$)	0.99
1.18	Plant conversion efficiency at the end of the campaign (% or kgNH $_3$ /teHNO $_3$)	0.88
2	Pt gauze per reactor	
2.1	Material (Pt% / Rh% / Pd%)	95/5
2.2	Diameter (mm)	800 (Hexagonal)
23	Number of gauze	42
2.4	Gauze supplier	Hereaus
3	Change of Pt gauze per reactor	
3.1	Average number of stops per campaign in the last three campaigns	14
3.2	Number of stops that were not planned	8
3.3	Date of next scheduled stoppage	Every 3 months for a mesh change and a general shutdown in July.

N2O ABATEMENT PLANT AND PROCESS DATA NACAG-ANNEX-001

Austin Powder Argentina SA Petrochemical Division

Classification Review 1 Date: 04/08/24

d

Next Review Date: -

Page 2of 4

3.4	Planned changes to the composition of Pt gauze in the future?	NO		
4	Reactor Basket / Pressure Drop Data			
4.1	Type of support system installed (basket with Raschig rings , others)	Mesh: Nickel / Chrome		
4.2	Support system depth (mm)	120		
4.3	Available depth for a secondary catalyst under gauze (mm)	260 Distance between the mesh and the top of the exchanger tubes		
4.4	Pressure drop tolerance in combustion reactor of:			
	Primary gauze (mbar)	-		
	Raschig ring bed (mbar)	-		
	Or full package (2 items above), (mbar)	-		
5	NSCR and tail gas information			
5.1	NOx abatement unit installed (Yes / No)	Yeah		
5.2	NOx abatement unit	Before expand		
5.3	NOx reduction system type (SCR /NSCR)	NSCR		
5.4	NSCR catalyst (precious metal, base metal, zeolite)	Pt-Rh-Pd Impregnating in ceramic base		
5.5	NSCR Catalyst Supplier	ECS		
5.6	Maximum temperature allowed in the NSCR reactor (°C)	732		
5.7	NSCR catalyst age (years)	Lifespan: 3-4 years Last upload: April 2023		
5.8	NOx regulation limit (ppm)	50		
5.9	NOx content before the reactor (ppm)	5,500		
5.10	NOx content after reactor (ppm)	< 50		
5.11	Gas flow before NSCR (kg/h or Nm 3 / h)	25,000 kg/h		
5.12	Gas flow after NSCR (kg/h or Nm ³ /h)	25,200 kg/h		
5.13	Tail gas temperature at the outlet of the absorption tower (°C)	25		
5.14	Tail gas temperature (°C) before NSCR	478 - 480		
5.15	Tail gas temperature (°C) after NSCR	710 - 730		
5.16	SCR O2 content (% vol.)	1.3 – 1.5%		
5.17	Tail gas temperature (°C) before expander	590 - 610		
5.18	Tail gas temperature (°C) before expander (max. Allowable)	620		
5.19	Tail gas temperature (°C) after turbine	270 - 280		
5.20	Tail gas pressure at the outlet of the absorption tower (bar a)	7.97		

The content of this document is the property of Austin Powder Argentina SA. Its total or partial reproduction by any means is prohibited. Rights reserved – Law 11,723.

EVER .	SINC

Austin Powder Argentina SA Petrochemical Division

N2O ABATEMENT PLANT AND PROCESS DATA

Classification d	Review 1 Date: 04/08/24	Next Review Date: -	Page 3of 4

5.21	Tail gas pressure at the absorption tower inlet (bar a)	7.97
5.22	Tail gas pressure (bar a) before turbine	6.4
5.23	Tail gas pressure (bar absolute) after turbine	~1
5.24	Tail gas flow (kg/h or Nm3 / h)	25,200 kg/h
	Reducing agents for NSCR:	
5.25	 Ammonia Plant Purge Gas Flow (kg/h) Natural Gas flow 	360 kg/h 200 kg/h
5.26	 Purge gas composition Natural Gas Composition 	68% H2 – 3%Ar – 26%N2 - 3%NH3 91% CH4 – 5.5% C2H2 – 0.5% C3H8 – 0.2% C4H10 – 2.8% others
6	Chimney information	
6.2	Distance from chimney to control room (m)	100
6.3	Distance from sampling location (possible/existing) at chimney to ground level	30
6.4	Sampling platform required (Yes/No)	No
6.5	Access to the sampling platform (stairs)	Through stairs
6.6	O ₂ content in tail gases (% vol.)	1.3 - 1-5%
6.7	Maximum allowable additional pressure drop caused by the tertiary reduction system	0.2 kg/cm2g
7	Steam generation with NSCR heat exchanger The pre- and post-NSCR boilers are considered.	
7.1	Steam flow generated (kg/h)	1,700
7.2	Generated steam temperature (°C)	200
7.3	Generated steam pressure (bar)	15 – 15.5
7.4	Use of generated steam	Turbine

